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Motivation
- Many phenomena in Science and Engineering are modelled using Partial Differential Equations (PDEs)
- For example, we may model material properties using elasticity equations, resulting in a PDE formulation.
- Subsequently, we may be interested in either simulating material behaviour under different circumstances (aka forward problem), or in inferring material 

properties from experiments such as tensile tests (this is termed the inverse problem). 

- We focus on the inverse problem, which is often under-constrained; many possible solutions exist due to inferring a continuous function from finite 
observations. Thus we constrain the search space to find a specific solution. 

- We follow the Bayesian approach which allows for incorporating expert prior knowledge and uncertainty quantification of the inferred quantities.
- The posterior distribution for         is analytically intractable, so approximation methods must be used. Traditionally, simulation-based methods such as Markov 

Chain Monte Carlo (MCMC) have been used.
- We advocate for Variational Bayes (VB) as an alternative by reformulating the integration problem in MCMC as an optimisation problem.
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- In VB, we choose a family of approximating distributions over which we optimise.
- The complexity of the family determines how much of the dependence of the posterior 

distribution is captured by the approximation.
- We use multivariate Gaussian to model the components of the discretization of        
- When specifying the covariance matrix of the approximating distribution, we take advantage 

of the structure of the discretized problem to decide which components are conditionally 
independent. 

- The resulting sparse matrix allows for faster linear algebra and fewer optimization 
parameters.

- Variational Bayes offers a computationally tractable 
alternative to the intractable MCMC methods and provides 
consistent mean and uncertainty estimates on the 
problems inspired by questions in computational 
mechanics.

- The variational approximation with a full-covariance 
structure and the structured precision structure adequately 
estimates posterior variance when compared to MCMC 
which are known to be asymptotically correct.

- It is naturally integrated with existing FEM solvers, using 
the gradient calculations from the FEM solvers to optimize 
the VB objective.

- Parameterizing the multivariate Gaussian distribution using 
a sparse precision matrix provides a way to balance the 
trade-off between computational complexity and the ability 
to capture dependencies in the posterior distribution.

- VB provides a good estimate for the mean and the variance 
of the posterior distribution in a time that is an order of 
magnitude faster than MCMC methods.

- The VB estimates may be used effectively in downstream
tasks to estimate various quantities of interest.
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