Structural Health Monitoring of Civil Infrastructure: from Research to Engineering Practice

B. F. Spencer, Jr.

Nathan M. and Anne M. Newmark Endowed Chair in Civil Engineering Director, Newmark Structural Engineering Laboratory Director, MUST-SIM: NEES@Illinois Director, Smart Structures Technology Laboratory (SSTL)

University of Illinois

Outline

♦ Background and Motivation

Enabling Wireless Smart Sensor Technology

- □ High-fidelity Hardware
- □ Service-oriented Software Framework
- ♦ Full-scale Implementations
- ♦ Future Directions

Conclusions

Why Monitor Infrastructure?

To detect and localize damage

- Deteriorating structures
- Lessons from catastrophic bridge collapses
- Limits in visual inspection
- SHM reduce inspection cost, while providing increased public safety
- Lifetime monitoring of future construction projects

Corrosion

Fatigue (Bay Bridge in CA, 2009)

Sung-su bridge collapse in Korea (1994)

I-35 bridge collapse in MN (2007)

Why Monitor Infrastructure?

- To validate the structural designs and characterize performance (e.g., develop database)
- ♦ To assist with infrastructure maintenance
- ♦ To design appropriate retrofit measures
- ♦ Improve seismic risk assessment
- To monitor and control the construction process
- ♦ To characterize loads in situ
- ♦ Assess load carrying capacities
- To assist with emergency response efforts, including building evacuation and traffic control

Structural Health Monitoring

Limitation of traditional methods

- Dense arrays of sensor are required to effectively monitor structures
- Wired monitoring systems are expensive, with much of the cost derived from cabling and installation
- Centralized data collection is not challenging for monitoring large civil infrastructure

Cabling & instrumentation for 400 wired strain sensors

Bill Emerson Memorial Bridge SHM system: \$1.3M for 86 sensors, ~\$15k/sensor (Caicedo et al. 2002; Celebi et al. 2004)

Enabling Wireless Smart Sensor Technology

* low cost
* ease of installation
* accurate data

Computers are Faster and Cheaper

Where Computing is Done

SSTL

Vision of the Future: *Internet of Things*

- Vast networks of sensors, installed in the urban environment, can serve as the eyes and ears of a first line of defense against various vulnerabilities
- Different types of sensors can be envisioned, each reporting information that provides insight to the status of critical infrastructure in real-time
- Wireless Smart Sensors will act as the fundamental building block for such sensor networks
 - □ *Low costs* allow for dense deployment as needed
 - Modularity provides inherent flexibility for use in both permanent and temporary applications

Smart Sensors

♦ But... what is a *smart sensor*?

First open source hardware and software platforms developed at Berkeley in the late 1990s as part of DARPA's Smart Dust project (Mica family of smart sensors).

Historic Decade of Smart Sensors

Full-scale Implementations to Bridges (selected)

Implementation	Purpose	Sensor Platform	# of Nodes	Sensor (channels)	Test duration	In-network Processing	Results
Alamosa Canyon (Lynch <i>et al</i> . 2003)	Wireless system proof-of- concept	WiMMS (prototype)	7	Accel. (14)	Short-term	Independent FFT	Modal frequencies
Ben Franklin (Galbreath <i>et al</i> . 2004)	Demonstration of wireless system with remote programming	Microstrain SG-Link	10	Strain + Temp. (10)	Continuous Medium-term	None	Streaming real- time strain time histories
Guemdang (Lynch <i>et al</i> . 2006)	Wireless sensor prototype and embedded computing validation	WiMMS (prototype)	14	Accel. (14)	Short-term	Independent FFT and peak picking	Modal frequencies, ODS
Golden Gate (Pakzad <i>et al</i> . 2008)	Test wireless sensor network requiring multi- hop communication	MicaZ	64	Accel. (128) Temp. (64)	Medium-term	None	Modal analysis after central data collection
Gi-Lu (Weng <i>et al</i> . 2008)	Test for health monitoring of cable-stayed bridge	WiMMS (prototype)	12	Accel. (12)	Short-term	None	Modal analysis and cable tension force

Smart Sensor Monitoring of the Golden Gate Bridge (2008)

Smart Sensor Monitoring of the Golden Gate Bridge (2008)

Requires **12 hours** to transmit **80 seconds** of data back to the base station!

Battery X 4

Extreme Rust on C-clamp

Accelerometer Board and Mote

antenna

Bi-directional Patch Antenna

Duct Tape to Hold Wires

Full-scale Implementations to Bridges (selected)

Implementation	Purpose	Sensor Platform	# of Nodes	Sensor (channels)	Test duration	In-network Processing	Results
Stork (Meyer <i>et al</i> . 2010)	Validation of long-term field test using wireless sensor network	Tmote Sky	6	Accel. (6)	Long-term	None	Cable tension force
Ferriby Road (Hoult <i>et al</i> . 2010)	Evaluation of the potential of wireless sensor network	MicaZ	7	Crack (3) Inclin. (3) Temp (7) Humid.(6)	Long-term	None	Crack growth and inclination of deck
New Carquinez (Lynch <i>et al</i> . 2010)	Wireless system proof-of- concept	Narada/ Imote2	30	Accel. (14)	Long-term	SSI Modal Analysis	Mode Shapes

Despite the fact that smart sensors have been readily available for nearly a decade, full-scale implementations are still limited.

What's Been Lacking?

- ♦ Hardware
 - Platform with computational capacity for high-data rate applications and distributed computing
 - Sensor hardware that to produce high-fidelity data that is appropriate for SHM
- ♦ Software
 - □ Middleware services to acquire high-fidelity data
 - □ Application software to implement distributed SHM
 - □ Flexible software that supports network and application scalability
- ♦ Full-scale implementation considerations
 - □ Communication performance evaluation
 - □ Autonomous network operation
 - □ Power management
 - □ Fault tolerance

High-fidelity Hardware

Imote2 with Sensor Boards

		From MEMSIC (2010)				
		MicaZ	Telos	iMote2		
	Microprocessor	Atmel ATmega128L	TI MSP430	Intel XScalePXA271		
	Clock speed (MHz)	7.373	8	13-412		
	Active Power (mW)	24	10	44 @ 13 MHz		
	Non-volatile memory (bytes)	128 K (Flash) + 512 K (EEPROM)	48K (Flash)	32 M (Flash)		
rd	Volatile memory (bytes)	4 K	1024K	256 K + 32 M (SDRAM)		
	Dimensions (mm) / Weight (g)	58*32 [*] 7 / 18	65*31 [*] 6 / 23	36 *48 [*] 9 / 12		

Imote2 and Basic Sensor Board

Imote2: Top and Bottom

Basic Sensor Board

Aliasing

- ♦ Cannot have significant energy above the Nyquist frequency (f_s/2)
- Anti-aliasing filters must be used in dynamic measurements to preserve signal integrity

- ♦ Consider a 48 Hz signal
- What if the signal is sampled at 50 Hz?
- The resulting measured signal has an apparent frequency of 2 Hz

Aliasing

Multifunctional Sensor Boards

High-sensitivity Accelerometer board (SHM-H board)

Pseudo-static test: slender column with lumped mass on top

Strain monitoring using SHM-S board

Strain sensor board for Imote2 platform

- High-throughput synchronized strain monitoring
- High precision auto-balanced Wheatstone bridge
- Up to 2500 times gain
- 0.3 μ-strain resolution at 20Hz B/W
- Stacked use with SHM-A or SHM-DAQ board
- Both foil-type strain gage and magnetic strain sensor can be used with SHM-S board

RemoteCommand SHMSAutoBalance

SHM-S board: top, stacked on SHM-DAQ and stacked on SHM-A

Tokyo Sokki magnet strain checker

High-precision Strain sensor board (SHM-S board)

SHM-S vs. Ni-DAQ (foil type)

Pressure and D2A Sensor Board

SHM-D2A Board

• 16bits, **Digital to Analog** conversion of 4 channels

TI-DAC8565

Imote2 Sensor Enclosure

Future Hardware Enhancement

24-bit DAQ (TI ADS1274, Delta-sigma type ADC)

- Delta-sigma noise shaping technology
- Low-power consumption suitable for wireless sensor application
- Support full capabilities of low-noise/high-sensitivity sensors
- Make it easy to implement/design new external sensor boards

Service-oriented Software Framework

Service-Oriented Architecture (SOA)

- ♦ Previous smart sensor applications:
 - □ Significant effort to create very specific applications
 - Difficult to modify for other applications, even with extensive CS knowledge
- Service-Oriented Architecture simplifies SHM software development
 - Applications are comprised of manageable, modular services that exchange data in a common format
 - The middleware framework connects the services by providing communication and coordination

Time Synchronization

 ♦ Each sensor has its own local clock which drifts over time
 ♦ Synchronization errors can be reduced to ~20µs

 \diamond Not the whole story...

Synchronized Sensing Service

♦ Uncertainty in start of acquisition

Power Management and Energy Harvesting

Effective Power Management with Autonomous Operation

- SnoozeAlarm:
- ThresholdSentry:
- AutoMonitor:

Energy Harvesting

- Solar panel (or Micro wind turbine) + Rechargeable Battery
- PMIC charger manipulates voltage and current for fast and stable charging.

ISHMP Services Toolsuite

Fault tolerant WSSN

- Skipping of unresponsive nodes
- Data storage in non-volatile memory
- Monitoring of sensor power
- Exclusion of low-power sensor nodes
- Watchdog timer and etc...

Enhanced operation

- Autonomous resuming of AutoMonitor
- ThresholdSentry for multi-hop communication
- Email notification of structural response and network anomalies

Illinois Structural Health Monitoring Project (ISHMP)

ISHMP Service Toolsuite

Foundation Services

- Reliable communication
- Time synchronization
- Numerical library (e.g. FFT, SVD, etc.)

Network Services

- Network data acquisition
- Decentralized data aggregation (DDA)
- Multi-hop communication

Application Services

- Correlation function estimation
- Eigensystem realization algorithm (ERA)
- Stochastic subspace identification (SSI)
- Frequency domain decomposition (FDD)

Tools and Utilities

- Test applications for Toolkit components
- Radio and antenna testing

Full-scale Implementation

US-Korea-Japan Collaborative Project on SHM Test-bed Using Wireless Smart Sensor Network (September 2008 – 2012)

> US : B.F. Spencer, Jr. & G. Agha (UIUC) Korea : H.J. Jung & C.B. Yun (KAIST), H.K. Kim (SNU) J.W. Seo (Hyundai Institute of Const. Tech.) Japan : Y. Fujino & T. Nagayama (U. of Tokyo)

2 nd Jindo Bridge					
Туре	Cable-stayed bridge				
Spans	70+344+70 = 484m				
Girder	Steel box (12.55m width)				
Design velocity	70 km/hr				
Designed by	Yooshin cooperation (2000, Korea)				
Constructed by	Hyundai construction (2006, Korea)				

Haenam

(Inland)

Deployment in 2009 (70 Nodes)

Deployment in 2010

Deployment in 2010

Evaluation

Typhoon Kompasu (2010.09.01)

2010-09-01 08:33UTC (09-01 17:33KST)

Evaluation: Wind Monitoring

Evaluation: Acceleration Responses

SSTL

Evaluation: System ID

#SSTL

- NExT & ERA method
- Identified frequency range: 0~3Hz
- 1000 seconds data at 25Hz sampling

Identified natural frequencies (Hz)

Mode	Wired System (2007)	FE analysis	WSSN (During Kompasu)				
Name			Haenam	Jindo	Avg.		
DV1	0.440	0.442	0.446	0.446	0.446		
DV2	0.659	0.647	0.645	0.647	0.646		
DV3	1.050	1.001	1.033	1.033	1.033		
DV4	1.367	1.247	1.356	1.342	1.349		
DV5	1.587	1.349	1.555	1.549	1.552		
DV6	1.660	1.460	1.653	1.635	1.644		
D T 1	-	1.789	1.798	1.802	1.800		
DV7	1.856	1.586	1.871	1.870	1.871		
DV8	2.319	2.115	2.259	2.261	2.260		
DV9	2.808	2.561	2.812	2.813	2.813		

- Synchronized acceleration & strain sensing at 25Hz
- For pylon, strain measurement was more informative

Evaluation: Girder Strain

Embedded Wheatstone bridg

at midspar

atpylon

bearing position

Sensor nod

- Composesive strain at pytobeeringingcation densitie strain at midspan
- Double peaks (?) in the strain measurements at pylon bearing location

Evaluation: Strain Analysis

Truck loading simulation using FE model

Evaluation: Battery Monitor

Evaluation: Cable Tension and Temperature

Evaluation: Long-term performance of Jindo-side WSSN

Deployment Achievements

• Hardware

- 669 sensors at 113 nodes
- High-sensitivity accelerometer board
- Solar panel with rechargeable battery
- Wind-induced energy harvesting

Software

- Multi-hop reliable data transfer and printing
- Fault tolerant operation
- Remote software updates
- Better user interface

World's largest deployment to date of wireless sensors for civil infrastructures monitoring.

World's first long-term deployment.

- Modal analysis with system synchronization
- Vibration-based tension estimation
- Multi-scale structural health monitoring (Modal information + Cable tension force)
- Wind-vibration correlation analysis

Web-based data repository and sharing

Next Steps

Wind Load and Wind Effects on Xihoumen Bridge

Hui Li, B.F. Spencer, Yan Yu, Jinping Ou

Wind Load and Wind Effects on Xihoumen Bridge

Wind Load and Wind Effects on Xihoumen Bridge

Campaign Monitoring for Management of Railroad Assets

The Future

Cyberinfrastructure for Smart Structures

- WSN applications for structural monitoring
- Repository of structure data and monitoring algorithms
 - Repository of models

CitySee: City-wide Urban Sensing

(Courtesy of **Prof. Yunhao Liu** of Tsinghua U.)

- ♦ Objective: 20 KM² urban area in Wuxi
 - □ 4000+ sensor nodes with temperature/humidity and light sensors
 - \Box 500+ nodes with CO₂ sensor

Asia-Pacific Summer School on Smart Structure Technology

Goals of APSS Program

- To enhance students' understanding of the cross-disciplinary technological developments on the emerging subjects of smart structure technologies
- To develop the cross-cultural human-network and understanding for the future cooperation in their professional career development.
- 3 weeks program for 6 years among US/Korea//China/Japan/India supported by NSF, NRF, JSPS, & NSFC.
- Coordinators
 - Korea : C-B. Yun (KAIST)
 - US : B.F. Spencer (UIUC)
 - Japan : Y. Fujino (U. of Tokyo)
 - China : L. Sun (Tongji U.)

- Ist APSS at KAIST, Korea, 2008 SISTeC-KAIST, July 28 - August 16, 2008
 - 50 graduate students attended.
 - http://sstl.cee.uiuc.edu/apss
- APSS at U. of Illinois, USA, 2009
 July 3 July 25, 2009
 - 45 graduate students attended.
- Since Arrow Strain S
 - 40 graduate students attended.
- 4th APSS at Tongji U., China, 2011 July 28 – August 10, 2011
 - 48 graduate students attended.
- Sth APSS at IIT, India, 2012 July 23-August 11, 2012
 - 48 graduate students attended.
- 6th APSS at KAIST, Korea, 2013

Concluding Remarks

Concluding Remarks

- This paper discusses recent advances and field validation of a state-of-the-art WSSN framework developed at the University of Illinois at Urbana-Champaign
- The open source ISHMP Services Toolsuite a wide variety of services and fault-tolerant features
- Full-scale WSSNs are realized for the purpose of SHM and the evaluation as well as the data analysis show high practicality of wireless SHM systems for civil infrastructure
- Tremendous potential and a level of maturity of WSSN for SHM has been demonstrated through full-scale deployment on the Jindo Bridge in Korea
- Education of the next generation of engineers in smart structures technology is of high importance

Acknowledgement

- ♦ NSF Grant CMS 06-00433 (Dr. S.C. Liu, Program Manager)
- Global Research Network Program (NRF-2008-220-D00117) from the National Research Foundation in Korea
- Smart Infra-Structure Technology Center (SISTeC) at KAIST in Korea
- Ministry of Land, Transport and Maritime Affairs in Korea
- ♦ Hyundai Construction Co. Ltd.

Thank you for your attention!

