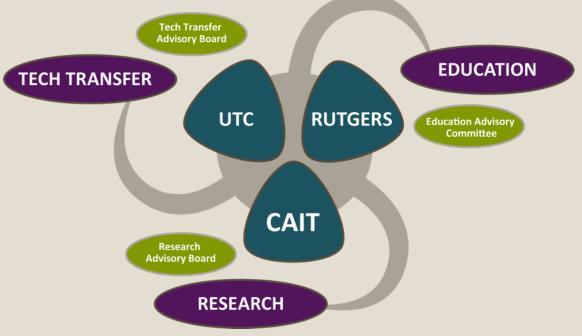


RUTGERS

Center for Advanced Infrastructure and Transportation

A U.S. Department of Transportation University Transportation Center

State of Good Repair: A proactive policy


September 28, 2015

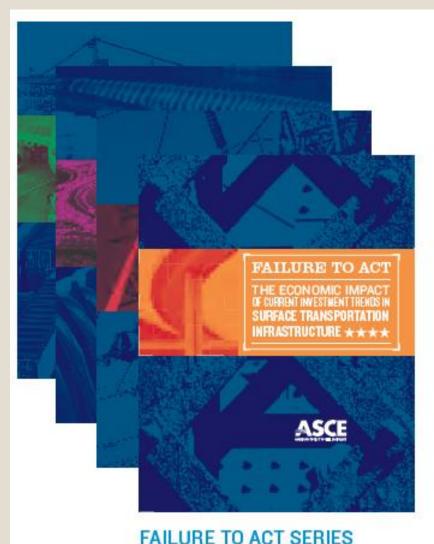
CAIT at a Glance >>

CAIT's Mission

Solving complex, interrelated transportation infrastructure problems, specifically in high-volume, multimodal corridor environments.

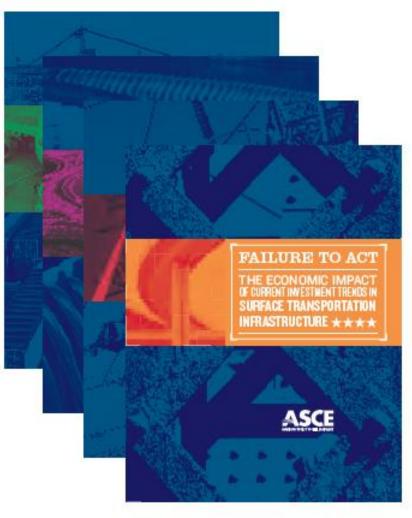
Successful & Elite >>

CAIT was named one of five USDOT National University Transportation Centers in September 2013


Successfully maintained UTC status through three transportation bills and four national competitions

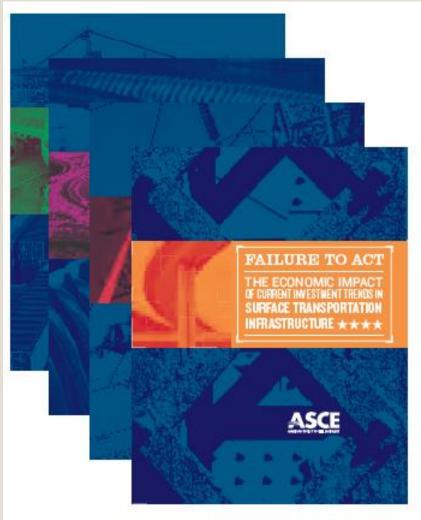
>> CAIT now leads a UTC consortium with eight top U.S. research universities

ASCE Failure to Act Series>>


How does a D for infrastructure affect America's economic future?

"This Failure to act report answers the key questions of how the conditions of the U.S. infrastructure systems affect the nation's economic performance "

ASCE Failure to Act Series>>


"Deteriorating infrastructure has a cascading impact on the nation's economy, negatively affecting business productivity, GDP, employment, personal income and international competitiveness."

FAILURE TO ACT SERIES

ASCE Failure to Act Series>>

"By 2020, America's projected surface transportation infrastructure deficiencies are expected to cost the national economy cumulatively almost \$900 billion in GDP, rising to \$2.7 trillion through 2040."

FAILURE TO ACT SERIES

FIGURE 1 * Investment Gap by Infrastructure Category as a Percentage of Total Needs in the Years 2020 and 2040

SOURCE Data taken from previous Failure to Act studies.

The Need for Infrastructure Research >>

4.1 million miles of roadway

 \cong 604,000 highway bridges

United States Transportation Multimodal Assets

330 inland & coastal ports

AVIATION

5,175 public

airports

161,300 miles of heavy and Class I rail

 \cong 2 million miles of

31,000 miles light rail and transit rail

Source: Bureau of Transportation Statistics, Pocket Guide 2012 Testing, engineering, and data management solutions—CAIT contributes to the health, durability, and performance of our nation's bridges.

Long-Term Bridge Performance

CAIT uses and develops cutting-edge nondestructive evaluation tools to accurately assess condition, detect deterioration, and monitor the health of critical infrastructure.

Infrastructure Condition Assessment & Monitoring

Rapid Load Testing and Rating of Large Populations of Bridges

Step 1

Rapid modal impact testing using a selfcontained mobile device

Step 2

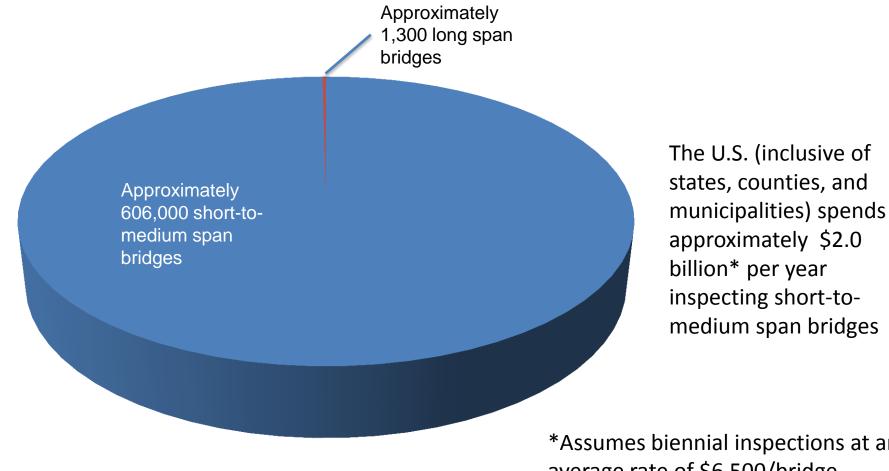
Semi-Automated pre- and postprocessing to obtain global frequencies and mode shapes

Step 3

Automated FE modeling using NBI data and on-site assessment

Step 4

Automated FE model calibration and load rating



Step 5 Reporting

Comparison with Current Structural Testing Approaches

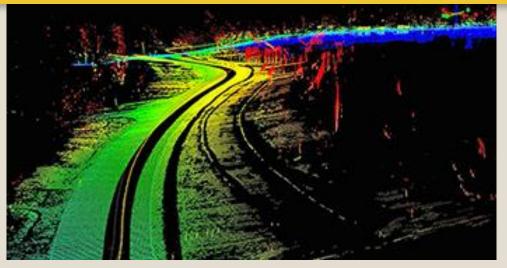
	Technology/ Approach	Cost	Prep. Time	Testing Time	Report Time	Access Equip	Bridge Closure	Overall Quality
Quasi-Static	Ambient monitoring w/ displacement transducers	\$30- 50K	5-10 days	2-5 day	3-5 days	Yes	Only under- side	Mod
	Load testing w/ displacement transducers	\$30- 50K	5-10 days	1 day	3-5 days	Yes	Partial 2 hrs	High
Dynamic	Ambient vibration monitoring	\$20- 30K	5-7 days	2-5 days	5-7 days	Yes	Only under- side	Mod
	MIMO Impact Testing	\$40- 60K	5-7 days	1 day	5- 7 days	Yes	Partial 2 hrs	High/ Mod
	Rapid Load Testing System	\$3-5K	N.A.	1-3 hrs	1-2 hrs	No	Slow downs	Mod

Breakdown of Bridges in the US...

*Assumes biennial inspections at an average rate of \$6,500/bridge

BEAST: Mission >>

For the first time, will allow the scientific study of deterioration processes on full-scale bridge decks in a rapidly compressed time. The lines of innovation:

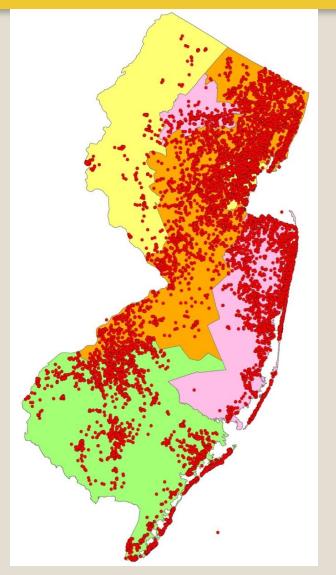

Calibrate field data with BEAST data to estimate/forecast remaining service life for much larger population of bridges

>> Develop reliable deck deterioration models

>> Evaluation of numerous technologies, materials and components

Validating new technologies being developed to augment bridge deck inspection

Pipeline safety and security >>


Lidar Output: post-damage assessments

Issues:

- >> "no-call" and high-risk excavations
- >> Encroachments

Opportunities (big data, internet of things):

- Automated assessments:
 - >> UAV, Lidar, thermography
 - >> Utility operator and commission data

All Damage Locations 2009-2014 Ref: 2014 Gas Line Damage Report

Highlight: Mobile LiDAR Post-Sandy Study >>

Highlight: Mobile LiDAR Post-Sandy Study >>

Mobile LiDAR collects extremely accurate surface condition data; paired with visual reference the data creates a virtual reality

- Can be used to record environment and structures before an event, and changes to them after disaster
- >> Data enables highly-accurate risk and predictive models that help planners, developers, and government agencies like FEMA assess future risk

Through research and training in pipeline technology and security, CAIT helps keep America's 2 million miles of underground infrastructure safe and flowing free.

Pipeline Safety & Security

CAIT Workshop – Life Cycle Cost Reduction

Identifying innovation
Developing Roadmap

Piscataway, NJ

January 2016
Welcoming participants

Life Cycle Cost Reduction - 2016

Keep in Touch with CAIT >>

Cait.rutgers.edu
facebook.com/RutgersCAIT
Thank you!